Levels of mature cross-links and advanced glycation end product cross-links in human vitreous.
نویسندگان
چکیده
PURPOSE To determine the levels of pyridinoline and deoxypyridinoline, two mature enzymatic cross-links, and pentosidine, an advanced glycation end product (AGE) cross-link, in the human vitreous, and to investigate the correlations among the cross-links and the effects of aging and diabetes mellitus (DM) on the levels of cross-links. METHODS Forty-five vitreous samples were collected from 32 patients (32 eyes) undergoing vitrectomy for diabetic retinopathy (DM group) and from 13 patients (13 eyes) (control group) who were age- and sex-matched patients with idiopathic macular hole or epiretinal membrane with no systemic conditions. The levels of the cross-links were determined using high-performance liquid chromatography after acid hydrolysis and pretreatment with SP-Sephadex. RESULTS The levels of pentosidine, pyridinoline, and deoxypyridinoline were 27.3 +/- 23.1 (mean +/- SD) pmol/mL (detectable in 45 of 45 specimens), 79.0 +/- 40.2 ng/mL (43 of 45 specimens), and 54.0 +/- 9.5 (32 of 45 specimens) ng/mL, respectively. When the vitreous samples from the DM and the control groups were compared, a significant difference (P <.05) was found in the pentosidine level but not in the levels of pyridinoline or deoxypyridinoline. No significant correlations were found between age and the cross-links. Significant correlations (P <.01) were found among the cross-links. CONCLUSIONS The results indicate that mature cross-link substances exist in the human vitreous. The results also suggest that glycation may occur in the vitreous after mature cross-links form and result in the formation of AGE cross-links. In human vitreous from patients with DM, increased levels of AGE cross-links may stabilize the formation of mature cross-links, but they did not increase the mature cross-links.
منابع مشابه
Bone Quality in Diabetes
Diabetes is associated with increased risk of fracture, although type 2 diabetes is characterized by normal bone mineral density (BMD). The fracture risk of type 1 diabetes increases beyond an explained by a decrease of BMD. Thus, diabetes may be associated with a reduction of bone strength that is not reflected in the measurement of BMD. Based on the present definition, both bone density and q...
متن کاملEffect on the mechanical properties of type I collagen of intra-molecular lysine-arginine derived advanced glycation end-product cross-linking
Non-enzymatic advanced glycation end product (AGE) cross-linking of collagen molecules has been hypothesised to result in significant changes to the mechanical properties of the connective tissues within the body, potentially resulting in a number of age related diseases. We have investigated the effect of two of these cross-links, glucosepane and DOGDIC, on the tensile and lateral moduli of th...
متن کاملAdvanced glycation end products in vitreous: Structural and functional implications for diabetic vitreopathy.
PURPOSE Advanced glycation end products (AGEs) form irreversible cross-links with many macromolecules and have been shown to accumulate in tissues at an accelerated rate in diabetes. In the present study, AGE formation in vitreous was examined in patients of various ages and in patients with diabetes. Ex vivo investigations were performed on bovine vitreous incubated in glucose to determine AGE...
متن کاملIdentification and quantification of major maillard cross-links in human serum albumin and lens protein. Evidence for glucosepane as the dominant compound.
Glycation reactions leading to protein modifications (advanced glycation end products) contribute to various pathologies associated with the general aging process and long term complications of diabetes. However, only few relevant compounds have so far been detected in vivo. We now report on the first unequivocal identification of the lysine-arginine cross-links glucosepane 5, DOGDIC 6, MODIC 7...
متن کاملRole of the Maillard reaction in aging of tissue proteins. Advanced glycation end product-dependent increase in imidazolium cross-links in human lens proteins.
Dicarbonyl compounds such as glyoxal and methylglyoxal are reactive dicarbonyl intermediates in the nonenzymatic browning and cross-linking of proteins during the Maillard reaction. We describe here the quantification of glyoxal and methylglyoxal-derived imidazolium cross-links in tissue proteins. The imidazolium salt cross-links, glyoxal-lysine dimer (GOLD) and methylglyoxal-lysine dimer (MOLD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nippon Ganka Gakkai zasshi
دوره 106 1 شماره
صفحات -
تاریخ انتشار 2002